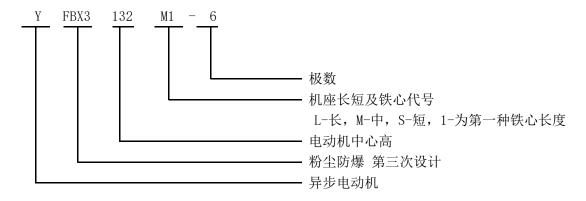
佳木斯三相异步防爆电机有限公司企业标准

ORS.460.008-2020

YFBX3 系列粉尘防爆三相异步电动机 (机座号 80~355) 产品样本

2020-10-01 发布 2020-12-01 实施


YFBX3 系列粉尘防爆三相异步电动机 (机座号 80~355) 产品样本

一. 概述

YFBX3 系列粉尘防爆三相异步电动机是根据 GB12476. 1—2000(idt IEC61241-1-1999)可燃性粉尘环境用电气设备 第1部分:用外壳和限制表面温度保护的电气设备 第1节 电气设备的技术要求的规定进行结构设计、试验和制造的。YFBX3 系列粉尘防爆三相异步电动机系全封闭、自扇冷式、鼠笼型结构。具有设计新颖、结构紧凑,造型美观、效率和转矩高、起动性能好、节能、噪声低、振动小、运行安全可靠等特点。本系列机座号范围 80~355,功率等级和安装尺寸完全符合国际电工委员会(IEC)标准。

二. 选型说明

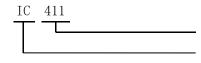
1. 型号的意义

2. 功率与安装尺寸的对应关系见表 1

表1

			同步转速r/mi	n	
机座号	3000	1500	1000	750	600
700/至 与	3000	1500	」 功率kW	100	000
80M1	0.75	0.55	0.37	0.18	
80M1 80M2	1.1	0. 75	0.55	0. 18	
90S	1. 5	1.1	0. 75	0. 23	
90L	2. 2	1. 5		0. 57	
	2. 2		1.1		
100L1	3	2. 2	1.5	0. 75	
100L2	4	3	0.0	1.1	
112M	4	4	2. 2	1.5	
132S1	5. 5	5.5	3	2.2	
132S2	7.5				
132M1	_	7.5	4	3	
132M2			5. 5		
160M1	11	11	7. 5	4	_
160M2	15			5.5	
160L	18. 5	15	11	7.5	
180M	22	18.5	_	_	
180L	_	22	15	11	
200L1	30	30	18.5	15	
200L2	37	30	22	10	
225S	_	37	_	18.5	
225M	45	45	30	22	
250M	55	55	37	30	
280S	75	75	45	37	
280M	90	90	55	45	
315S	110	110	75	55	45
315M	132	132	90	75	55
315L1	160	160	110	90	75
315L2	200	200	132	110	90
355S1			100	100	
355S2			160	132	_
355M1			185	100	110
355M2			200	160	132
355L1	280	280	220	185	160
355L2	315	315	250	200	185

3. 绝缘等级及温升


电动机的绝缘等级:通常为F级或H级,两种绝缘结构的技术参数相同,只是温升限值不同。

YFBX3 系列电机是 F 级绝缘。当电动机运行地点海拔不超过 1000m, 最高环境温度不超过 40℃为基础时, 定子绕组温升的限值(电阻法)应不超过 80 K, 但机座号 315L 的 2、4 极和机座号 355 按 105K 考核。

- 4. 轴承允许的温度: 不超过95℃。
- 5.外壳防护等级为 IP65 (见 GB/T4942.1)。

6. 冷却方式为 IC411 (见 GB/T1993) 。

全封闭自扇冷式(电动机轴上带冷却风扇)冷却方式标志字母

- 7. 气候防护类型及环境代号
- (1) TH-湿热带型
- (2) W一户外防轻腐蚀型
- (3) WF1一户外防中腐蚀型
- (4) WF2一户外防强腐蚀型
- (5) F1一户内防中腐蚀型
- (6) F2一户内防强腐蚀型
- 8 可燃性粉尘环境用电气设备第1部分: 用外壳和限制表面温度保护的电气设备
- (1) 定义
- a. 粉尘

在大气中依靠自身重量可沉淀下来,但也可持续悬浮在空中一段时间的固体微小颗粒。

b. 可燃性粉尘

与空气混合后可能燃烧或闷燃,在常温常压下,与空气形成爆炸性混合物的粉尘。

c. 导电性粉尘

电阻系数等于或小于 $1 \times 10^3 \Omega \cdot m$ 的粉尘,纤维或飞扬物。

d. 可燃性粉尘环境

在大气环境条件下,粉尘或纤维状的可燃性物质与空气的混合物点然后,燃烧传至全部未燃混合物的环境。

e. 粉尘层最低点燃温度

规定厚度的粉尘层在热表面上发生点燃的热表面的最低温度。

f. 粉尘云的最低点燃温度

炉内空气中所含粉尘云出现点燃时炉子内壁的最低温度。

g. 允许的最高表面温度

为避免粉尘点燃,在实际运行中允许电气设备表面达到的最高度,这取决于粉尘类型、层厚和采用的安全系数。

h. 防粉尘点燃

避免粉尘层或粉尘云点燃的所有措施(粉尘防爆电机是采用外壳防止粉尘进入和限制表面温度来实现的)。

i. 尘密外壳

能够阻止所有可见粉尘颗粒进入的外壳。

i. 防尘外壳

不能完全阻止粉尘进入,但其进入量不会妨碍设备安全运行的外壳,粉尘不应堆积在该外壳内易产生点燃危险的位置。

k. 区域

根据可燃性粉尘或空气混合物出现的频率和持续时间及粉尘层厚度进行分类。

1. 20区

在正常运行过程中可燃性粉尘连续出现或经常出现,其数量足以形成可燃性粉尘与空气混合物和可能 形成无法控制和极厚的粉尘层的场所及容器内部。

m. 21 ⊠

在正常运行过程中,可能出现粉尘数量足以形成可燃性粉尘与空气混合物,但未划入20区的场所。

n. 22 区

在异常情况下,可燃性粉尘云偶尔出现并且只是短时存在,或可燃性粉尘偶尔出现堆积或可能存在粉尘层并且产生可燃性粉尘空气混合物的场所。如果不能保证排除可燃性粉尘堆积或粉尘层时,则应划为21区。

注: 如何详细划分存在或可能存在的内容请见 IEC61241-3-1997

(2) A型和B型电气设备

两种不同型式的电气设备,具有同等的防点燃水平。两种型式中均分尘密和防尘型。A型和 B型,标准规定了不同的结构参数,不同的试验方法和不同标志方法。但判定合格标准是一致的,制造厂一般多提供 A型。

(3) 标志

- a. A型电气设备的附加标志 如字母符号 tDA21,
 - tD 表示"防粉尘点燃"
 - A表示"A"型
 - 21 表示设备可使用区域 21 区 (如 22 区标 22)
- ——最高表面温度 TA 可标温度值,或按 GB3836.1 标温度组别或两者都标,TA 值在标牌上单标,不在上述符号内。
- b. B型电气设备的附加标志 如字母符号 tDB21,
 - tD 表示"防粉尘点燃"
 - B表示"B"型
 - 21 表示设备可使用区域 21 区
- ——最高表面温度 TB 可标温度值,或按 GB3836.1 标温度组别或两者都标,TB 值在标牌上单标,不在上述符号内。
- (4) 粉尘防爆电机的选择

- a. 无论是A型或B型,除了22区且为非导电粉尘采用防尘外壳外,其他情况下,均需采用尘密结构(IP6×),特别注意的是有的使用部门选用隔爆型电气设备用于粉尘场所,这是错误的。
- b. 在可能出现或分别出现可燃性气体和可燃性粉尘的环境中使用的电气设备应当选复合型电气设备来同时满足防爆和粉尘要求。
- c. 粉尘防爆电机不适用于那些不需要大气中的氧气即可燃烧的炸药粉尘或自燃引火物质。
- d. 粉尘防爆电机不适用于可燃性粉尘引起危险的煤矿井下,因为煤矿井下存在甲烷气体,这与第 b 条性质相同。
- e. 适用的行业

在工业生产过程中常常会产生许多固体的可燃性粉尘,除煤炭(煤、活性炭)外,还有金属加工(铝、镁、钛等),农副产品加工(面粉、可可、棉尘、亚麻、纤维),化工原料,合成材料(塑料、树脂、染料等),化学药品(乙酸钠脂、阿斯匹林、硬脂酸锌等),这些行业和部门的电力拖动都需要粉尘防爆电机。

(5) 采用的标准

GB12476-1《可燃性粉尘环境用电气设备》

第1部分:用外壳和限制表面温度保护的电气设备

第1节: 电气设备的技术要求(IEC61241-1-1)

第 2 节: 电气设备的选择、安装和维护(IEC61241-1-2)

第2部分: 试验方法

第 1 节: 粉尘最小点燃温度测量方法(IEC61241-2-1,GB/T16429-1996)

第 2 节: 粉尘层电阻率的测定方法(IEC61241-2-2,GB/T16427-1996)

第 3 节: 粉尘最小点燃能量的测定方法(IEC61241-2-3, GB/T16428-1996)

第3部分:可燃性粉尘危险场所分类(IEC6124

三. 现场使用条件

额定电压: 380V;

额定频率: 50 Hz;

工作制: S1 连续工作制;

海拔: 不超过 1000m;

环境:环境空气温度随季节而变化,但不超过-20℃~ +40℃。

四. 安装结构型式

本系列电动机基本安装型式及九种派生安装结构型式见表 2。

基本结构型式

B3 机座带底脚,端盖无凸缘。

B5 机座不带底脚,端盖有凸缘。

B35 机座带底脚,端盖带凸缘。

V1 机座不带底脚,端盖有凸缘,立式安装。

表 2

机	++		派生安装结构型式	
座	基本安装结构型式	采用 B5 型	采用 B3 型	采用 B35 型

号	В3	B35	В5									
	БЭ	Бээ	DO	V1	V3	V5	V6	В8	В6	В7	V15	V36
H80-160	√	√	√	√	√	√	√	√	√	√	√	~
H180-280	√	√	√	√	ı	ı	_	_		_	_	
Н315-355	√	_	_	_	ı	ı	_	_		_	_	

五. 结构特点

- a) YFBX3 系列三相异步电动机系全封闭、外扇冷式、鼠笼型结构。具有设计新颖、结构紧凑,造型美观、效率和转矩高、起动性能好、节能、噪声低、振动小、运行安全可靠等特点。
- b) 本系列电动机功率等级和安装尺寸完全符合国际电工委员会(IEC)标准。
- c) 电机主电源接线盒位置: 机座范围 80~112 在机座顶部; 机座范围 132~280 在机座右侧; 机座范围 315~355 在机座顶部。
- d)辅助要求:中心高 180~355 电动机带注排油装置。
- e) 接连方式: 功率在 3kW 及以下者为 Y 接, 其他功率均为△接。
- f) 电缆引入装置: 橡套,钢管布线供选
- g) 传动方式: 采用正齿轮或联轴器传动,如采用皮带传动,订货时请提出。
- h) 可加装制动器(刹车制动电机)。

六. 技术数据见表3

表3

					-,,,,,				
型号	功率 (kW)	转速 (r/min)	电流 效率 (380V) (%)		功率 因数 (cos ϕ)	堵转电流 额定电流	堵转转矩 额定转矩	最大转矩 额定转矩	重量 (kg)
		同	步	速	3000 r/	min (2	极)		
80M1-2	0.75	2020	1.83	75	0.83	6.1			17
80M2-2	1.1	2830	2.6	77	0.04				19
90S-2	1.5	2040	3.46	79	0.84	7.0	2.2		21
90L-2	2.2	2840	4.86	81	0.85			2.3	21
100L-2	3.0	2880	6.34	83	0.87				31
112M-2	4.0	2890	8.2	85					42
13281-2	5.5	2000	11.1	86	0.88				61
132S2-2	7.5	2900	14.9	87		7.5			70
160M1-2	11	2020	21.3	88	0.00				105
160M2-2	15	2930	28.8		0.89				114
160L-2	18.5	2930 34.7		90.0	0.90				127

									2. 100.000 2
180M-2	22	2940	41.0						168
200L1-2	30	2050	55.5	91.2					224
200L2-2	37	2950	67.9	92					232
225M-2	45		82.1	92.3			2.0		292
250M-2	55	2070	99.8	92.5					377
280S-2	75	2970	135.3	93.0					530
280M-2	90		160.2	93.8					582
315S-2	110	2000	195.4	94	0.91				890
315M-2	132	2980	233.2	94.5				2.2	980
315L1-2	160		282.4	94.6			1.8	2.2	1055
315L2-2	200		348.4	04.9		7.1			1110
355M1-2	220	2000	383.3	94.8	0.02	7.1			1550
355M2-2	250	2980	433.7	05.2	0.92				1630
355L1-2	280		485.7	95.2			1.6		1775
355L2-2	315		545.3	95.6					1900

表3(续)

型号	功率 (kW)	转速 (r/min)	电流 (380V)	效率 (%)	功率 因数 (cos \(\(\psi \))	堵转电 流额定 电流	堵转转矩 额定转矩	最大转矩额定转矩	重量 (kg)
		同	步	转 速	1500 r/s	min (4	4极)		
801-4	0.55	1390	1.57	71	0.75	5.2	2.4		16
802-4	0.75	1390	2.1	73	0.76				16
90S-4	1.1	1.400	2.85	75	0.77	6.0			22
90L-4	1.5	1400	3.72	78	0.78				25
100L1-4	2.2	1.420	5.1	80	0.81		2.3		32
100L2-4	3.0	1430	6.71	82	0.02		2.3	2.2	34
112M-4	4.0		8.8	84	0.82	7.0		2.3	42
132S-4	5.5	1440	11.7	85	0.83	7.0			71
132M-4	7.5		15.6	87	0.94				74
160M-4	11	1460	22.5	88	0.84				109
160L-4	15	1460	30.0	89	0.85	7.5	2.2		134
180M-4	18.5	1470	36.4	90.5	0.86	7.5			165

180L-4	22		42.9	91					181
200L-4	30		58.0	92					239
2258-4	37		70.2	92.5					288
225M-4	45		85.0	92.8		7.2			308
250M-4	55		103.2	93	0.87	7.2			398
280S-4	75		138.4	93.8					546
280M-4	90	1480	165.5	94.2					660
315S-4	110		201	94.5	0.00				910
315M-4	132		240.4	94.8	0.88				1002
315L1-4	160		287.8	94.9				2.2	1055
315L2-4	200		359.8	95	0.89				1128
355M1-4	220		395.8			6.9	2.1		1820
355M2-4	250		443.3	05.2					1890
355L1-4	280		496.5	95.3	0.90				2095
355L2-4	315		558.6	95.6					2180

表3(续)

型号	功率 (kW)	转速 (r/min)	电流 (380V)	效率 (%)	功率 因数 (cos \(\(\psi \))	堵转电 流额定 电流	堵转转矩 额定转矩	最大转矩额定转矩	重量 (kg)
		同	步	转 速	1000 r/	min (6极)		
801-6	0.37	020	1.3	62	0.70	4.7	1.0	2.0	17
802-6	0.55	930	1.79	65	0.72	4.7	1.9		17
90S-6	0.75		2.3	69	0.72				20
90L-6	1.1	040	3.2	72	0.73	5.5	2.0		24
100L-6	1.5	940	4.0	76	0.75		2.0		35
112M-6	2.2		5.6	79					40
1328-6	3.0		7.4	81	0.76			2.1	60
132M1-6	4.0	960	9.8	82			2.1	2.1	64
132M2-6	5.5		12.9	84	0.77	6.5			75
160M-6	7.5		17.2	86	0.77				102
160L-6	11	070	24.5	87.5	0.78		2.0		123
180L-6	15	970	31.7	89	0.01	7.0			170
200L1-6	18.5		38.6	90	0.81	7.0	2.1		220

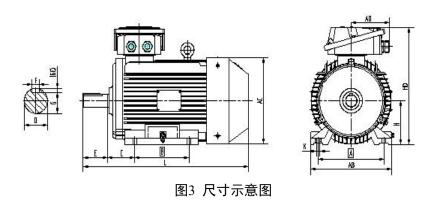

22		44.8		0.83				280
30		59.3	91.5	0.84		2.0		308
37		71.1	92					374
45		86.0	92.5			2.1		530
55	000	104.7	92.8	0.06				595
75	980	141.7	93.5	0.86				990
90		169.5	93.8			2.0		1080
110		206.8	94			2.0	2.0	1300
132		244.7	94.2	0.87				1400
160		292.3	04.5					1700
185		338	94.5	0.00	6.7			1700
200	980	365.4	0.4.7	0.88		1.9		1750
220		402	94.7					2130
250		456.8	94.9					2200
	30 37 45 55 75 90 110 132 160 185 200 220	30 37 45 55 75 90 110 132 160 185 200 980 220	30 59.3 37 71.1 45 86.0 55 104.7 75 141.7 90 169.5 110 206.8 132 244.7 160 292.3 185 338 200 980 365.4 220 402	30 59.3 91.5 37 71.1 92 86.0 92.5 55 104.7 92.8 141.7 93.5 90 169.5 93.8 110 206.8 94 132 244.7 94.2 160 292.3 94.5 185 338 94.5 200 980 365.4 94.7 402 94.7	30 59.3 91.5 0.84 37 71.1 92 86.0 92.5 55 104.7 92.8 141.7 93.5 90 169.5 93.8 110 206.8 94 132 244.7 94.2 0.87 160 292.3 185 338 94.5 200 980 365.4 402 94.7	30 59.3 91.5 0.84 37 71.1 92 45 86.0 92.5 55 104.7 92.8 141.7 93.5 90 169.5 93.8 110 206.8 94 132 244.7 94.2 0.87 160 292.3 185 338 94.5 200 980 365.4 220 402 94.7	30 59.3 91.5 0.84 37 71.1 92 45 86.0 92.5 55 104.7 92.8 141.7 93.5 90 169.5 93.8 110 206.8 94 132 244.7 94.2 0.87 160 292.3 185 338 94.5 200 980 365.4 220 402 94.7	30 59.3 91.5 0.84 37 71.1 92 45 86.0 92.5 55 104.7 92.8 141.7 93.5 90 169.5 93.8 110 206.8 94 132 244.7 94.2 0.87 160 292.3 185 338 94.5 200 980 365.4 402 94.7

表3 (续)

型号	功率 (kW)	转速 (r/min)	电流 (380V)	效率 (%)	功率 因数 (cos \(\(\))	堵转电 流额定 电流	堵转转矩 额定转矩	最大转矩额定转矩	重量 (kg)
		同	步	转 速	750 r/n	nin (8	极)		
801-8	0.18	650	0.88	51		3.3		1.9	20
802-8	0.25	030	1.15	54	0.61	3.3		1.9	21
90S-8	0.37	(70	1.49	62	0.61				33
90L-8	0.55	670	2.17	63		4.0			37
100L1-8	0.75		2.43	71	0.67		1.8		33
100L2-8	1.1	690	3.36	73	0.60				35
112M-8	1.5		4.46	75	0.69	5.0			43
132S-8	2.2	-10	6.16	78	0.71				64
132M-8	3.0	710	8.06	79	0.72			2.0	78
160M1-8	4.0		10.3	81	0.73	6.0	1.9	2.0	105
160M2-8	5.5	720	13.6	83	0.74				115
160L-8	7.5		17.8	85.5	0.75		• •		145
180L-8	11		25.5	87.5			2.0		185
200L-8	15	730	34.1	88	0.76	6.6			250
225S-8	18.5		41.1	90			1.0		265
225M-8	22	740	47.4	90.5	0.78		1.9		295

250M-8	30		64.2	91					405
280S-8	37		77.8	91.5	0.79				510
280M-8	45		94.1	92					595
315S-8	55		111	92.8	0.01				850
315M-8	75		151	93	0.81				950
315L1-8	90		178	93.8					1055
315L2-8	110		217	94			1.0		1118
355S-8	132		261	93.7	0.82		1.8		1820
355M-8	160		314.7	94.2		6.4			1900
355L1-8	185		363.5	94.3					2100
355L2-8	200		387.4	94.5	0.83				2180
		同	步	转 速	600 r/m	nin (10	0极)		
315S-10	45		99.6	91.5	0.55				811
315M-10	55	590	121	92	0.75		1.5		911
315L1-10	75		162.1	92.5	0.76	6.2	1.5		1080
315L2-10	90		191	93	0.77			• •	1200
355M1-10	110		230	93.2				2.0	1910
355M2-10	132	580	275		0.50		1.2		2120
355L1-10	160		333	93.5	0.78	6.0	1.3		2250
355L2-10	185		385						2380

七. 外形及安装尺寸见表 4~表

表 1 机座带底脚、端盖上无凸缘的电动机

单位为毫米

机		安	装		尺	寸	及	公	差										外	形尺	寸		
座	极数			С		D		Е		F		G ^a		Н		K ^b							
号	1/2.32	A	В	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	基本 尺寸	极限 偏差	位置度 公差	AB	AC	AD	HD	L
80 M		125	100	50		19		40		6	0 -0.030	15.5	0 -0.10	80			+0. 36		165	176		270	326
90 S 90 L		140	125	56	± 1.5	24	+0. 009	50				20		90		10	0		180	182	120	285	375 400
100 L		160		63		28	-0. 004	60	_	8	0 -0.036	24		100				Ф1.0 М	200	215		315	444
112 M		190	140	70	± 2.0	20		00			0 0.030	24		112		12			240	221		347	486
132 S 132 M	2, 4, 6, 8	216	178	89		38		80	± 0.3	10		33		132		12	+0. 43		264	256	160	376	536 561
160 M		254	210 254	108		42	+0. 018 +0. 002		_	12		37	-	160	0 -0.50		0		324	314		448	667
160 L 180 M		279	241	121	± 3.0	48	10.002	110		14	_	42. 5		180	0 -0.50	14. 5			349	358	185	490	742
180 L 200 L		318	279 305	133	-	55				16		49	-	200	4			Φ1.5 M	390	397		545	762 851
225 S	4, 8		286	100		60		140	±0.5	18	0 -0.043	53	1			10 -					1		886
225 M	2	356	311	149		55		110	±0.3	16		49		225		18. 5			431	452	220	600	881
	4, 6, 8	100		1.00	1	60				10		53		050	-				402	400		250	911
250 M	2 4, 6, 8	406	349	168	-	65				18		58		250					486	492	-	650	960
280 S	2 4, 6, 8	457	368	100		75		140		20	0 -0.052	67. 5		280		24			F40	544	240	740	1050
280 M	2	407	419	190		65				18	0 -0.043			200					542	344		140	1080
200 M	4, 6, 8		413			75	+0. 030			20	0 -0.052												
	2					65	+0. 011			18	0 -0.043	58	0 0 00										1230
315 S	4, 6, 8,		406			80		170		22	0 -0.052	71	0 -0.20										1305
	2					65		140	1	18	0 -0.043	58	1										1355
315 M	4, 6, 8, 10	508	457	216		80		170		22	0 -0.052	71		315					630	625		890	1440
	2					65		140	-	18	0 -0.043	58					+0. 52 0						1440
315 L	4, 6, 8,		508			80		170	± 0.5	22		71						Ф2.0					1440
	2				1	75		140		20]	67.5			0 -1.0			W			1		1445
355 S	4, 6, 8, 10, 12, 14, 16		500		±4.0	95	+0. 035 +0. 013	170		25		86				28					290		1491
	2					75	+0. 030 +0. 011	140		20	-	67. 5											1445
355 M	4, 6, 8,	610	560	254		0.5	+0. 035	170		25	0 -0.052	96		355					740	705		1 000	1401
	10、12、14、 16					95	+0. 013	170		25		86											1491
	2					75	+0. 030 +0. 011	140		20		67. 5											1575
355 L	4, 6, 8, 10, 12, 14, 16		630			95	+0. 035 +0. 013	170		25		86											1621

a: G=D-GE, GE 的极限偏差对机座号 80 为 (+0.10 0), 其余为 (+0.20 0)。

b: K 孔的位置度公差以轴伸的轴线为基准。

c: 外形尺寸为参考尺寸。

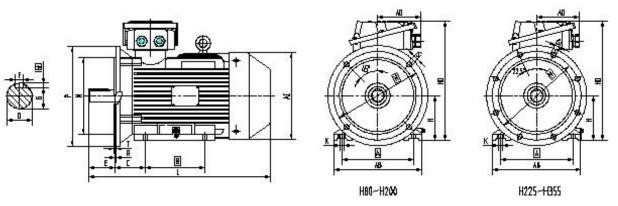


图4 尺寸示意图

表 2 机座带底脚、端盖上有凸缘(带通孔)的电动机

单位为毫米

		r														₹ Z			冲、 	1 1			/ HJ.C	ט לו נעייי											// / / / / / / / / / / / / / / / / / /
									1				安		装	J	7	寸	及	1	_公	差										外	形	尺	寸
机座号	凸 缘 号	极数	A	В	基本尺寸	C 极限偏差	基本尺寸	D 极限偏差	基本尺寸	E 极限偏差	基 本 尺 寸	F 极限偏差	基 本 尺 寸	极限偏差	基 本 尺 寸	极限偏差	基本尺寸	极限偏差	位置 度公 差	M	基本尺寸	极限偏差	P^{c}	基本尺寸	R ^d 极限 极展	基本尺寸	W 限偏差	位置 	基本尺寸	□ 极限偏差		AB	AC AD	HD	L
80 M	FF16		12 5	10 0	50	±	19		40		6	0-0030	15. 5	0 -0. 10	80		1.0	+0.		1.05	100		200		±	1.0		Φ				16 5	17 6	270	326
90 S 90 L	5		14 0	12 5	56	1.5	24	+0·009 -0·004	50				20		90		10	36 0		165	130	+0·014 -0·011	200		1.5	12	+0.	1.0000	3.5			18 0	18 12 0	285	375 400
100 L	FF21		16 0	14	63		28		60		8	0 -0.	24		100				Φ 1.0 ®	215	180		250				43 0					20 0	21 5	315	444
112 M 132 S	5	0 4 6	19 0	0	70	± 2.0						036			112		12								± 2. 0	14 . 5			4			24 0	22 1 16	347	486 536
132 M	FF26 5	2, 4, 6,	6	17 8	89		38		80	±0·3	10		33		132			+0.		265	230		300								4	26 4	25 0 6	376	561
160 M 160 L	FF30		25 4	21 0 25 4	108		42	+0·018 +0·002			12		37		160	0 -0. 5	1.4	43				+0·016 -0·013										32 4	31 4	448	667 707
180 M	0		27	24	121	± 3.0	48		110		14		42.		180		14. 5			300	250		350		± 3. 0					0		34	18 5 35	490	742
180 L	FF35		9 31	27 9 30		-						0 -0.	5	0 -0.					Φ 1.5 M	050	200		400	0						-0. 12		9 39	8 39		762
200 L 225 S	0	4,8	8	5 28	133		55 60	-	140		16 18	043	49 53	20	200		18.			350	300	±0·016	400					Ф 1. 5 ®				0	7 22	545	851 886
225 M	FF40 0	2 4, 6, 8	35 6	6 31 1	149		55	_	110	±0.5 ±0.3	16	-	49		225		5			400	350	± 0.018	450			18. 5	+0. 52		5			43	45 0 2	600	881
250 M		2 4, 6, 8	40 6	34 9	168		60	+0.			18		53 58		250			+0.								J	0					48 6	49 2	650	960
280 S	FF50	4, 6, 8		36 8		± 4. 0	75	030 +0. 011	140	±	20	0 -0. 052	67.				0.4	52	Φ	500	450	±	550		± 4. 0						8		24		105 0
280 M	0	2	45 7	41	190		65			0.5	18	0 -0. 043	58		280	0 -1. 0	24		2.000	500	450	0. 020	550									54 2	54 0 4		108
200 M		4, 6, 8		9			75				20	0 -0. 052	67. 5																						0

																												OKS.70
315 S		2		10		65			18	0 -0. 043	58																	122 7
313 3		4, 6, 8,		6		80		170	22	0 -0. 052	71																	130 7
315 M	FF60	2	50 8	15 2	216	65		140	18	0 -0. 043	58	315			600	550	± 0. 022	660							62 5		890	135 7
315 M	0	4, 6, 8,		7		80		170	22	0 -0. 052	71						0.022							0	5			143 7
315 L		2		50		65		140	18	0 -0. 043	58																	135 7
		4, 6, 8,		0		80		170	22		71																	143 7
		2				75		140	20		67. 5		00										0					144 5
355 S		4, 6, 8, 10, 12, 14, 16		50 0		95	+0. 035 +0. 013	170	25		86		28							24	Ф 2. 0(M)	6	-0. 15			29 0		149 1
055 W		2		56		75	+0. 030 +0. 011	140	20	0	67. 5																	144 5
355 M	FF74 0	4, 6, 8, 10, 12, 14, 16		$^{\circ}$	254	95	+0.	170		-0. 052	86	355			740	680	± 0. 025	800						74 0	70 5		100	149
255.1		2		63		75	+0.	140	20		67. 5																	157 5
355 L		4, 6, 8, 10, 12, 14, 16		0		95	+0.	170	25		86																	162 1

a: G=D-GE, GE 的极限偏差对机座号 80 为 (+0.10 0), 其余为 (+0.20 0)。b: K、S孔的位置度公差以轴伸的轴线为基准。c: K、S孔的位置度公差以轴伸的轴线为基准。d: R为凸缘配合面至轴伸肩的距离。e: 外形尺寸为参考尺寸。

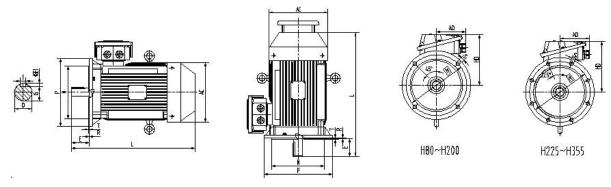


图5 尺寸示意图

表 3 卧式安装或立式安装、机座带底脚、端盖上有凸缘(带通孔)的电动机

单位为毫米

		Г							12	• •			17.70至市7													川毛小	
								安		装	尺	7	† 2	及	公		差							外	形	尺寸	t
机 座 号	凸 缘	极数		D		E		F	0	a 1			N			R°		S ^d			Т	П <i>/</i> -b				L	_
号 	号		基本尺寸	极限偏差	基本尺寸	极限偏差	基本尺寸	极限偏差	基本尺寸	极限偏差	M	基本 尺寸	极限偏差	P⁵	基本尺寸	极限 偏差	基本尺寸	极限偏差	位置度 公 差	基本尺寸	极限偏差	一 凸缘 孔数	AC	AD	HD	大 個	立式
80 M			19		40		6	0 -0. 030	15. 5	0 -0. 10													176		190	326	356
90 S	FF165		24		50				20		165	130		200		±1·5	12		Ф1.0М	3.5			182	120	195	375	405
90 L			24	+0.009	50		8		20				+0·014 -0·011										102	120	195	400	430
100 L	FF215		28		60		0	0	24		215	180		250				+0. 43					215		215	444	479
112 M	17213		20		00			-0. 036	24		213	100		230		±2 · 0	15			4			221		235	486	521
132 S	FF265	2, 4, 6, 8	38		80	±0·3	10		33		265	230		300			15			1		4	256	160	244	536	571
132 M	11.200																									561	596
160 M			42	+0. 018			12		37				+ 0 · 016 - 0 · 013								0		314		288	667	717
160 L	FF300			+0.002				_		0	300	250		350	0						-0. 12 0			185		707	757
180 M	-		48		110		14		42. 5	-0. 20						±3 · 0			Ф1.5М				358		310	742	792
180 L								_																		762	812
200 L	FF350		55				16	0	49		350	300	±0.016	400	-		19	+0. 52		5			397		345	851	901
225 S	-	4、8	60	_	140	±0·5	18	-0. 043	53									0						220	-	886	946
225 M	FF400	2	55	+0.030	110	±0·3	16	-	49		400	350	± 0.018	450		+4.0							452		375	881	941
		4、6、8	60	+0.011					53							±4·0						8				911	971
250 M	FF500	2			140	±0.5	18				500	450	±0.020	550									492	240	400	960	1025
		4, 6, 8	65						58																		

																									UK	5.460.00	<u> 3-</u> 2
280 S		2	65				18	0 -0. 043	58																1 050	1115	
280 3		4, 6, 8	75				20	0 -0. 052	67. 5		500	450	±0.000	550			10		Φ1.5 ®	_			544	460		1110	
280 M		2	65		140		18	0 -0. 043	58		500	450	±0.020	550			19		Ψ1.0Ψ	5			044	400	1 080	1145	
200 M		4, 6, 8	75				20	0 -0. 052	67. 5																1 000	1145	
315 S		2	65				18	0 -0. 043	58																	1310	
310 3		4, 6, 8, 10	80	0.030 +0.011	170		22	0 -0. 052	71																	1390	
21E M	EECOO	2	65		140		18	0 -0. 043	58		600	550	1.0.000	cco									625	575		1440	
315 M	FF600	4, 6, 8, 10	80		170	±0.5	22	0 -0. 052	71	0	600	550	± 0.022	660	0	±4 · 0		+0. 52			0 -0.12	8	020	070		1520	
215 1		2	65		140		18	0 -0. 043	58	-0. 20					0	Ξ1 0		0			0	0				1440	
315 L		4, 6, 8, 10	80		170		22		71								24		Ф2.000	6				290		1520	
מבר כ		2	75		140		20		67. 5								24		Ψ2.0W					290		1595	
355 S		4, 6, 8, 10, 12, 14, 16	95	+0. 035 +0. 013	170		25		86																	1650	
355 M	FF740	2	75	+0. 030 +0. 011	140		20	0 -0. 052	67. 5		740	680	±0.025	800									705	645		1595	
355 M	FF140	4, 6, 8, 10, 12, 14, 16	95	+0. 035 +0. 013	170		25		86		140	000		600									100	045		1650	
355 L		2	75	+0. 030 +0. 011	140		20		67. 5																	1725	
900 L		4, 6, 8, 11, 12, 14, 16	95	+0. 035 +0. 013	170		25		86																	1775	

a: G=D-GE, GE 的极限偏差对机座号 80 及以下为(+0.10 0), 其余为(+0.20 0)。

b: P尺寸为最大限值。

c:R为凸缘配合面至轴伸肩的距离。

d:S孔位置度公差以轴伸的轴线为基准。

e:外形尺寸为参考尺寸。

M12

八、盒内电源的接线端子数量及规格和接地端子规格数据(见表)。

机座号 接线端子数量 接地端子规格 接线端子规格 YFBX3 80~100 M4 M5 YFBX3 112~132 M5 M5 YFBX3 160~180 M6 M6 6 YFBX3 200~225 M8 M8 YFBX3 250~280 M10 M10

表 4 接线端子数量及规格和接地端子规格数据

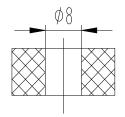

b) 电动机接线盒进线口处螺纹规格(见表 10)。

表 5 电缆接线盒进线口处螺纹规格

M16

10 kg C	进线口虬	累纹规格
机座号	国内	国外
YFBX3 80~100	M25×1.5	M25×1.5
YFBX3 112~132	M30×2	M32×1.5
YFBX3 160∼180	M36×2	M40×1.5
YFBX3 200∼225	M48×2	M50×1.5
YFBX3 250~280	M64×2	M63×1.5
YFBX3 315∼355	M64×2	M63×1.5

- c) H160~H355 定子测温与加热器接线盒进线口处螺纹规格为 M16×1.5。
- d) H160~H355 远传轴承测温接线盒密封圈尺寸(用户进线电缆与之相配)(见图 22)。

轴承测温接线盒密封圈

图 1 辅助接线盒示意图

九、轴承

YFBX3 315~355

a)轴承型号

机座号 100~355 轴承型号(见表 11)。

表 6 轴承型号

机座号	轴伸端	非轴伸端
YFBX3 80	6304-2RZ/C3	6304-2RZ/C3
YFBX3 90	6305-2RZ/C3	6305-2RZ/C3
YFBX3 100	6306-2RZ/C3	6306-2RZ/C3
YFBX3 112	6306-2RZ/C3	6306-2RZ/C3
YFBX3 132	6308-2RZ/C3	6308-2RZ/C3

YFBX3 160	6309/C3	6309/C3
YFBX3 180	6311/C3	6311/C3
YFBX3 200	6312/C3	6312/C3
YFBX3 225	6313/C3	6313/C3
YFBX3 250	6314/C3	6314/C3
YFBX3 280 (2P)	6314/C3	6314/C3
YFBX3 280 (4∼-8P)	6317/C3	6317/C3
YFBX3 315 (2P)	6317/C3	6317/C3
YFBX3 315 (4∼10P)	NU319/C3	6319/C3
YFBX3 355 (2P) B3、B35	NU317/C3	6317/C3
YFBX3 355 (2P) V1	6317/C3	7317B
YFBX3 355 (4∼16P) B3、B35	NU320/C3	6320/C3
YFBX3 355 (4∼16P) V1	6320/C3	7320B

十. 最大径向力(对皮带轮传动系统)

最大径向力: 径向负载的最大允许径向力 F_0 (单位: N)是基于以下前提条件而言的,即负载力的作用线(即皮带轮的中心)必须在自由轴伸的长度以内(长度为X),长度X(mm)是从轴肩到F力作用线之间的距离。因此,长度X(max就是轴伸的总长度,50Hz情况下的最大径向力,基本结构型式(见表12)。

表 7 50Hz 情况下的最大径向力对照表

				径向	力,N			
机座号	2	2P	4	1P	(6P	8	3P
	X=0	X=max	X=0	X=max	X=0	X=max	X=0	X=max
YFBX3 80	485	400	625	515	735	605	815	675
YFBX3 90	725	605	920	775	1090	910	1230	1030
YFBX3 100	1030	840	1310	1060	1550	1250	1720	1400
YFBX3 112	1010	830	1270	1040	1520	1240	1690	1380
YFBX3 132	1490	1180	1940	1530	2260	1780	2500	1980
YFBX3 160	1540	1210	2040	1590	2330	1820	2660	2080
YFBX3 180	2000	1550	2350	1950	2800	2250	3050	2500
YFBX3 200	2550	2100	3350	2750	3900	3200	4150	3450
YFBX3 225	3050	2550	3750	2950	4550	3600	4850	3900
YFBX3 250	3650	2950	4400	3600	5350	4350	5700	4700
YFBX3 280	3350	2800	8700	7200	10800	8900	11900	9850
YFBX3 315	3950	3350	9900	8100	12100	9900	13300	10900
YFBX3 355	4250	3750	10300	9000	13000	11000	14400	12000

十一、密封圈

轴转动部分采用 AS568 V 型密封圈防护,密封圈示意(见图 23),具体型号(见表 13)。

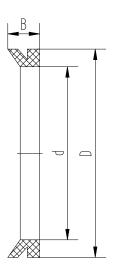


图 2 油封示意图

表 8 密封圈规格

和民日	密封图	圖规格
机座号 —	轴伸端	非轴伸端
YFBX3 80	TLA0020BF	TLA0020BF
YFBX3 90	TLA0025BF	TLA0025BF
YFBX3 100	VN70V-028B	VN70V-028B
YFBX3 112	VN70V-028B	VN70V-028B
YFBX3132	VN70V-040B	VN70V-040B
YFBX3 160	VN70V-045B	VN70V-045B
YFBX3 180	VN70V-055B	VN70V-055B
YFBX3 200	VN70V-060B	VN70V-060B
YFBX3 225	VN70V-065B	VN70V-065B
YFBX3 250	VN70V-070B	VN70V-070B
YFBX3 280(2P)	VN70V-070B	VN70V-070B
YFBX3 280(4~8P)	VN70V-085B	VN70V-085B
YFBX3315(2P)	VN70V-085B	VN70V-085B
YFBX3 315(2~10P)	VN70V-095B	VN70V-095B
YFBX3 355(2P)	VN70V-085B	VN70V-085B

YFBX3 355(4~16P)	VN70V-0100B	VN70V-0100B
注: 非标准特殊供货电机、	密封圈根据电机上实际用密封圈规格为准。	

十二、订货须知

- 15.1 本样本仅供用户选型用,具体数据容有变动。
- 15.2 订货时请注明电动机型号、功率、同步转速、额定电压、额定频率、调频范围、安装结构型式、防爆标志、防护等级、接线盒进线方式等。
- 15.3 对电动机的调频范围、防护等级、轴承注排油结构有特殊要求时,须在订货合同上注明,无注明者均按上述有关条款的规定供货。
- 15.4 对电动机有其它特殊要求时(特别是对电机产生振动、高低温、强腐蚀环境),请在订货合同中注明,并请事先与制造厂联系。

编制: 校对: 审核: 标准化: 审定: 批准:

发放单位:

产品开发部: 2 工艺部: 1 标准化: 1 市场部: 1 外贸部: 1

电话: 15945885946

网址: www.jmsfbmotor.com 邮箱: jmsfb motor@163.com

地址: 黑龙江省佳木斯市东风区光复东路428号